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1.0. ABSTRACT

Automatic seismogram interpretation and onset estimation are desirable goals facilitating the rapid location and
discrimination of seismic events, automation also relieves the human operator from onerous repetitive tasks. At
regional distances the onsets of seismic phases are associated with  gradual, rather than sudden, changes in the
statistical properties of the seismic time series, i.e. changes in autoregressive models and mean square
amplitudes. The work presented combines two aspects of the onset time estimation, the detection of the onset as
a change in the trend of the cumulative sum (CUSUM) of a suitable test statistic, and a randomized search for
its location, simulated annealing (SA). The latter is applied repeatedly, thus, resulting in multiple onset time
estimates. These typically form clusters around the arrival times of the known seismic phases, but there are
some scattered values as well, that have to be discarded. The uncertainties in the onset times estimated can be
quantified in terms of the spread in the values of the best defined clusters. Various standard cluster analysis
methods can be applied to define individual clusters. The system is presently developed using MATLAB,
utilizing its graphical user interface capabilities.

2.0. OBJECTIVES

The objective of this work is to develop automated methods for interpreting regional and teleseismic short
period seismograms using ideas and algorithms from the statistical literature. In the analyses of seismic data,
onset times of the various seismic arrivals are of great importance, because they are used in locating the sources
and segmenting the seismograms into wave groups used in discrimination of various types of events. Although
various onset time (or change point) estimation methods have been tested in the past, with success, for time
series where the properties (amplitudes and frequency spectra) suddenly change, actual seismograms are more
complex. Amplitudes increase and decrease and spectra of various arrivals may be different.  Because of the
great variability of the seismic data, it is necessary to make the methodology work reliably under varying
conditions. It is likely that several approaches that have been tried may have to be combined to achieve
reliability and robustness to achieve these goals.

3.0. RESEARCH ACCOMPLISHED

3.1. Background.

Automatic phase arrival time estimation for regional arrivals is of considerable interest because of the need for
rapid location and identification of numerous seismic events by networks monitoring natural and man-made
seismic activity. Times of seismic ‘phase’ arrivals can be defined as time instants, where some visible
characteristic, such as amplitude, frequency content or wave polarization changes in some recording. Typically,
regional arrivals are high frequency, broadband, emergent  wave groups containing numerous cycles. Generally,
later arrivals have no clear, impulsive waveforms and are preceded by the codas of earlier ones and their onset
times can only be defined to within a few cycles. Besides locating events from multiple Pn times at several
stations, onset time estimation is useful in facilitating location using multiple arrivals in the same seismogram
and in automated application time and frequency domain discriminants.

The methods developed in this paper  differ from the semi-automatic computer guided onset time determination
methods presently used by analysts in current systems, in which preliminary phase onset predictions suggest
picks to the analysts. We find that these suggested onset times often take precedence over  what the analysts
actually sees in the seismogram leading to biased or censored onset times. What we are trying to do is to teach



the computer to pick multiple phase onsets based on the seismograms only, as if it were the first time in an
unknown region.

There are numerous statistical approaches in the literature to determining the arrival time of ‘phases’. Onsets of
packets of seismic energy associated with various paths, i.e. seismic phases,  are usually associated with sudden
changes in amplitudes, spectra, polarization and slowness. Generally it is assumed that it is known that the
change occurs somewhere in a predefined time interval and that the statistical model of the time series changes
abruptly. It is also assumed that the time series are stationary before and after such a change and that the
statistical distributions are multivariate Gaussian (e.g. Basseville and Nikiforov 1993).

Depending on the autoregressive models applied one may test for spectral and amplitude changes (single
channnel model), slowness changes (multichannel model applied to array sensor outputs) or polarization (three-
channel model) as described by several workers (Kushnir 1996, Leonard and Kennett 1999). The model fitting
can be performed  for each guess of the onset time (Taylor et al 1992, Takanami 1991) or the fit to two fixed
models fitted at each side of the possible arrival times may be used (Kvaerna 1966a,b). The minimum of the
summed squared residuals occurs when  two models are fitted such that the boundary of the fitting regions
correspond to the onset time. In any case, the estimation process decreases the degrees of freedom in the
process, thus decreasing the stability and its sensitivity. Common to all these methods is the assumption that the
time interval where the phase onset  occurs is known and there are sufficient segments of the time series
preceding and following the onset for effect the estimation models. The approach described above is quite
general and is applicable to many kinds of problems involving changes in time series.

Subtle changes in the frequency content in noisy records often give clue to a  human indicating the onset of a
seismic phase arrival. On the other hand, when such human capabilities are needed it simply indicates a failure
of applying appropriate frequency domain prefiltering that could  produce an enhanced  amplitude contrast
between the noise and the arrival. Appropriate prefiltering in frequency is a prerequisite for further onset time
determination regardless of the method (Kvaerna 1996a,b). Various schemes for optimum pre-filtering  were
suggested and most of these seem to work well in practice and the exact nature of filter is not critical as long as
they are reasonably close to the optimum S/N2 shape (averages of  signal amplitude spectrum divided by the
squared noise amplitude spectrum). Minimum phase filters based on  Kvaerna ‘s definition of “usable
bandwidth” (Kvaerna 1995, 1996a), as well as those shaped according to  S/N2 , S2/(S2+N2) the latter is a
Wiener filter (Whalen 1971), where S and N are signal and noise spectral amplitudes respectively, or noise-
adaptive predictive filtering all enhance the amplitude contrast  between the noise background preceding the
onset of the signal.

This happens because both regional seismic signals and noise have similar spectral shapes in the 3-10 Hz band,
in which they both fall off with frequency. These statements seem to be generally true for typical regional
seismograms. Thus after suitable prefiltering  has been performed, the problem reduces to, for most practical
purposes, to a detection of a sudden or gradual change in trace amplitude levels.

3.2. Some CUSUM-based onset time estimation methods.

A step-like change in amplitude levels can be detected easier if a cumulative sum (CUSUM) of the squared or
absolute amplitudes it is computed (Der and Shumway 1999, Iclan and Tiao 1994, Basseville and Nikiforov
1993, Shumway 1998). After imposing a linear trend to the CUSUM, a repetitive onset time estimation is
performed, locating the minima or maxima of various chosen  functions, by simulated annealing. The clustering
in the multiple onset time estimates provides a means to assess the reliability of the process and the significance
of each major arrival. In practical tests, the method has outperformed those based on testing for changes in
autoregressive models.

The approaches based on the cumulative sum statistics are simple to apply and can be automated for
applications in a CTBT monitoring environment. Inclán and Tiao (1996) developed a properly centered and
normalized CUSUM test statistic and tabulated critical points for testing of significance. Furthermore, they
developed an Iterative Cumulative Sum of Squares (ICSS) algorithm that allows sequential identification of
multiple changepoints in a white noise series. In this work we have tested their approach on a set of regional
seismic data.



Suppose first that a single channel time series xκ, κ=1,2,….n is observed and we have a possible change point
that is to be detected using a CUSUM type statistic.  Assume that the time series x has been prewhitened and
has a zero mean, so that the change in regime can be modeled simply by a change in the variance of the white
noise process. Inclán and Tiao (1996) proposed using the centered and scaled cumulative sum of the squared
amplitudes. First define the sum of squares function over the interval [1 κ] of length  points as
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The scaled and normalized CUSUM statistic over the interval [1,T] at the point 1<κ<T is defined as
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The F statistic for testing for a change of variance at time κ is
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This is, of course the standard power detector. With no change in variance in the time interval 1<κ<T ,  D(κ) is
a monotone function of t. If the variance increases D(κ) will have a maximum at the change point.

If we assume that the xi are normally distributed with mean 0 and variances σ  then we can obtain the
likelihoods for testing one change against no change  and let NT=1
represent one change. The likelihood  for NT=0 is
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The likelihood  function for NT=1, change at point t is
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The best estimate of the change point is where the likelihood ratio is
maximized
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The function puts more weight on the middle of the time series. This is not a serious disadvantage since prior to
applying the algorithm one has a fairly good idea where the main regional phases are (from standard detection
algorithms and F-K analyses). All the previous formulas assume that the time series were  pre-whitened. In
doing F-tests with bandwidth limited data the degrees of freedom used in the assumed F distributions should be
appropriately reduced to account for the limited bandwidth.

The paper by Chen and Gupta (1997) uses a corrected form of AIC, say
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for 2<κ<T-2, and chooses τ as a minimizer  of AIC(C(κ)) by introducing the second, penalty function term.
Constructing an unbiased estimator leads to equation (7) above (Hurvich and Tsai 1989). The AIC likelihood is
claimed to perform better if the break point is close to the ends of the segment, a situation that we try to avoid,
however.

A binary iterative version of the CUSUM algorithm was proposed  by Inclan and Tiao (1994) and Chen and
Gupta (1997) which uses  repetitive applications of the approach described above for subintervals of the first
time interval. The method applies the following steps;

1)  Calculate D(κ) from the start to the endpoint of the initial time segment
2)  Search for a significant maximum as defined by equation (3). If one is found at κ1 then
3)  Search the time interval 1<κ<κ1 for another significant maxima (that pass an F-test)
4)  Similarly search the κ1<κ<T intervals for a significant maximum
5)  Continue the same procedure in each subinterval until no more significant maxima are found.

3.3. Basic building blocks of the CUSUM-based onset time estimation system

In order to apply any of the search methods for locating onsets, first one needs to segment the seismograms such
that each of the segments contain only one arrival. Typically, a regional seismogram contains multiple arrivals
followed by either a coda where the amplitude decays with time or remains nearly constant.

Moreover, the minima of the variants of the CUSUM functions described above will provide reasonable onset
time estimates, additional refinements can greatly improve the results. The exact locations of such absolute
minima may be accidental and thus may be of lesser importance than the overall layout of the regions of
minima, whether they are narrowly localized or broad. The latter case implies greater uncertainties in the onset
times, while the former a lesser uncertainty. It is therefore desirable to use stochastic, randomized search
methods repeatedly and use the multiple onset time picks to estimate more stable onset times and their
uncertainties.

3.3.1. Leaky integration

Applying leaky integration to the absolute trace amplitude generates a function which has maxima close to the
trace maxima but delayed in time. This function is useful, therefore, for segmenting the seismogram between
such maxiam such that each segment will contain one sudden increase of trace amplitude envelopes (a phase
onset).

3.3.2.   F tests.

F tests are standard tools for verifying the arrival of a new package of energy from the source, i.  e. a phase
arrival. In this work we pick the arrival time from the modified CUSUM D(κ) and test whether the variances on
both sides of this arrival are indeed different. In performing an F test on seismic data that has not been
prewhitened one must make sure that the number of degrees of freedom is adjusted appropriately. F statistics for
the assumed phase onset within one segment must pass a significance test before the onset is accepted.
Otherwise the segment is declared as containing no onsets.

3.3.3.   Simulated annealing.

Simulated annealing (SA) was  designed to find global minima of irregular functions where many local minima
may exist. It tends to disregard minor local minima and converge to the lowest points. It uses the randomized
Metropolis search algorithm which is based on a thermodynamic analogy (Press et al 1986). Initially, it allows a



search using large steps in the independent variables, which may even be associated with increased values of the
function. This allows the solution to “jump out” from local minima and resume searching for other minima. As
“cooling” occurs such steps are accepted less and less and finally the solution will settle in broad global
minima. Repeated application of SA with random starting points will give rise to populations of onset time
estimates that can be used for evaluation of the efficiency and accuracy of the method.

3.3.4.  Cluster analysis

The multiple application of SA searches automatically provides means for assessing the stability and accuracy
of the onset estimates derived from the SA method. Starting out with numerous randomly chosen  positions for
the onset time within a search window these will converge into positions of prominent  CUSUM minima and
form a varying number of tight clusters. Besides these there will be hopefully much fewer scattered ‘solutions’
that are obviously spurious and thus must be discarded.  This approach was not pursued much in our recent
work but it has a considerable potential (Der and Shumway 1999). We apply the well known K-means
clustering algorithm (Tou and Gonzalez 1974, Theodoris and Koutroumbas 1999) for finding the clusters in a
population of SA onset times or trace amplitude maxima in this report.

3.4  Flow diagram of the process.

Figure 1 shows two ways such a process may be put together from its building blocks. One applies the SA
algorithm, the other does not. The F-test makes the decision whether in a given segment a phase onset is
declared or not. The one involving SA is more refined, but it takes more time for computations. The
optimization of the whole process requires optimum choices in the numerous parameters required. Such are
those appropriate to the prefiltering methods, the leaky integration constants, the temperatures and cooling rates
and number of trials  for SA, specifications needed for  cluster analysis. Optimizing such parameters requires
the testing of the algorithms on large amounts of data and minimizing the number of false or missed onset times

Figure 1. Flow diagram of the process.

3.4. PRACTICAL EXAMPLES OF THE APPLICATIONS OF THE  METHODOLOGIES
DESCRIBED ABOVE.

3. 4.1. Performance of the CUSUM Procedure for Estimating Pn Onset Times.

During the early phase of this work we have made evaluations of  the performance of the CUSUM minimum
and the combined CUSUM-SA procedure for picking onset times of first-arriving Pn phases under various S/N
scenarios.  The evaluation was based on comparing the performance of a) human analysts  b) picking the
absolute minimum of normalized CUSUM and keeping the arrival if the F tests is passed c) picking the median
of multiple picks using SA on the CUSUM and taking the median of these, but discarding the result if the SA
arrivals are highly scattered.

The results, reported at the annual research review meeting last year and in a subsequent annual report, will not
be repeated here. We simply state that the performance of the second of these options was comparable to a
human analysts picking the initial Pn arrival times. The module for Pn onset time estimation will be tested more



extensively in the near future.

 3.4.2. Application of the binary iterative version of normalized CUSUM method to Segment Complete
Regional Seismograms.

The iterative binary segmentation method method of Inclán and Tiao (1996) was applied to many regional
seismograms. Typically, three iterations were used. During the first iteration, the largest arrival was commonly
picked. In the succeeding iterations the smaller arrivals were identified. Although this binary segmentation
approach  works well for  events where the various arrivals have grossly unequal amplitudes, it fails in many
cases where there are several arrivals with comparable amplitudes. Therefore, we need more general
segmentation methods while retaining much of the statistical testing machinery  contained in the papers of
Inclán and Tiao (1996) and Chen and Gupta (1997).

3.4.3. Methods based on  seismogram segmentation.

The approach proposed below seems to work much better than the binary segmentation methods. In order to
find the rapid increases in amplitude we have leaky-integrated the absolute trace amplitudes of the seismogram.
The maxima of traces thus processed will be located at times later than the maximum amplitude portions of the
respective phases due to the time delay introduced by the leaky integral low-pass filter. If we segment the
seismogram from beginning to end using these maxima as the intermediate point then the actual onsets will be
interior to these segments. If we locate the minima of the functions D(κ) within these initial segments then we
shall have the approximate locations of the phase onsets. Now, if we create windows that are centered on this
preliminary onset time with the end points at the maxima of the leaky-integrated absolute amplitudes.

We have tested two methods for finding the broad maxima. One method consisted of the monitoring the
amplitude differential (gradient) in the leaky-integrated absolute amplitude trace over a set time interval
(typically tied to the time constant of the leaky integrator), finding a maximum and set the segment separation
such that this gradient  decreased by a set factor (typically 0.9). Automatic onset time picks for seismograms
segmented this way are shown in Figure 2. The examples shown were taken from the Ground Truth data base
compiled by Multimax Inc. and downloaded through the Internet. Many of these seismograms are not strictly
regional, some distances are teleseismic. Consequently some broader bandpass prefiltering was needed to
enhance these arrivals.



Figure 2 continued

Figure  2. Examples of the decomposition  of seismograms into segments bounded by the decreasing
portions of the maxima of the leaky-integrated absolute amplitudes (second trace. This is followed by
looking for the minima in the function D(t) of Incl�n and Tiao (1994) in each segment (third trace).
This is followed by the redefinition of shorter segments designed  to be centered on  this minimum be
bounded by the previous right  side of the segment (shorter segments below). This is followed by an
F-test around the minimum to determine whether the change in amplitudes is significant. An onset
(vertical  lines) is declared if this is the case. Such onsets can be further refined by actually defining
the onsets as maxima of F or the statistics of Chan and Gupta (1997).



Another approach we have tried  for finding the broad maxima was based on a cluster analysis of  multiple
solutions  produced by simulated annealing (SA) . Since our SA program was designed for finding minima,
we have simply reversed the sign of the leaky-integrated trace for such computations. The centers of the
clusters for the picks of minima thus produced can be used as limits of the segments to be searched for
single increases in amplitude. Note that this procedure is the same as the one we have applied for finding
onset times previously (Der and Shumway 1999). Illustrations of the results of such procedures are shown
in Figure 3. We have found that this method was somewhat more robust than the previous one.

Figure 3.  Examples of the decomposition  of seismograms (top trace) into segments bounded by the
clusters of the SA picks (plus signs) of the mimima of the sign-inverted leaky-integrated absolute
amplitudes (second trace), followed by looking for the minima in the function D(t) of Inclán  and
Tiao (1994) in each segment (third trace). This is followed by the redefinition of shorter segments
designed  to be centered on  this minimum be bounded by the previous right  side of the segment
(shorter segments below). The next step is an  F-test around the minimum to determine whether the
change in amplitudes is significant. An onsets (vertical  lines) are declared if this is the case. The first
letters in the titles are the station names and the following digits are the event ‘orid’-s (see data base
Schema 3.0 Manual), referring to Table I. The band-pass filters used are indicated in the rest of the
title.

It appears, however, that reliable segmentation of high frequency seismograms and the automatic
determination of the onset times of the various arrivals will require sophisticated algorithms. The
algorithms need to have sufficient flexibility to recognize arrivals with quite different amplitudes,
impulsive arrivals without codas, phases with long codas and phases where the seismogram essentially
consists of a series of increases in amplitude without much decrease until the Lg coda. The latter is typical
of Kola peninsula quarry blasts and the binary iterative segmentation procedures of Inclán and Tiao (1994)
and Chen and Gupta (1997) seem to work well for these. For seismograms containing phases with codas
the  segmentation methods using SA work better. In actual implementation of such methods more than a
single approach may have to be employed in interpreting seismograms in the automatic mode.



Since the methods have been tested in the interpretative MATLAB computing environment they run slow
under MATLAB. This is misleading, however. According to our previous experience (Der and Shumway
1999), when implemented as compiled codes all the algorithms tested will run much faster than any human
analyst could read the seismograms. SA is a very fast algorithm because it mostly involves comparisons   of
the magnitudes of various quantities (Press et al 1986) . In this prototyping stage we have not taken the
pains, either,  to fully exploit the efficient  vectorized computation  features in MATLAB. In the actual
implementation MATLAB codes can also be compiled or linked to compiled C or FORTRAN modules.

4.0. CONCLUSIONS AND RECOMMENDATIONS.

CUSUM-based methods seem to be quite suitable for processing regional seismograms since these consist
of long wavetrains and have emergent phase onsets. Since CUSUM methods emphasize changes in the
properties of signals over several cycles this kinds of methods can be used to segment regional
seismograms.  CUSUM-based methods to pick seismic phase onset times can also be developed based on  a
variety of statistics that are diagnostic of polarization, slowness, and  spectral changes (Jurkevics 1988, Der
et al 1993). Other candidates may include instantaneous relative phase differences among components,
adaptive slowness estimates or their combination.

During the course of previous work described in Der and Shumway (1999), and in the work summarized in
this report, we have developed the essential building blocks for a practical implementation of an automatic
seismogram interpretation algorithm. As stated above, not all the approaches that we have tried worked
equally well for segmentation of seismograms and onset estimation under the various scenarios
encountered in practice. For seismograms that contain steplike increases in the amplitudes of the successive
phases binary iterative segmentation procedures of Inclán and Tiao (1994) and Chen and Gupta (1997)
seem to work well. For seismograms containing phases with codas and variable amplitudes the
segmentation methods using SA work better. Once the segments are defined numerous, previously
developed  approaches for the determination of the onset times described described in the literature can be
applied (Inclán and Tiao 1994, Chen and Gupta 1997, Basseville and Nikiforov 1993).

Any practical algorithm package for the automatic interpretation of high frequency seismograms will have
to possess sufficient intelligence to recognize various situations and chose the best algorithms. We shall
implement the final code in a MATLAB environment complete with a suitable graphical user interface
(Marchard 1990). Most of the algorithms described have been programmed as MATLAB M-files during
the work described.

Key Words; onset times, change points, location, discrimination
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